Convolution of a Continuous Compact Support With a Polynomial is a Polynomial

Abstract

We consider the convolution operator in spaces of holomorphic functions, defined in convex subdomains of the complex plane, with polynomial growth at a boundary. We prove that if this operator is surjective on the class of all bounded convex domains, then it always has a linear continuous right inverse one.

References

  1. Bell, S. "Representation Theorem in Strictly Pseudoconvex Domains," Ill. J. Math. 26, 19–26 (1982).

    MATH  Google Scholar

  2. Straube, E. J. "Harmonic and Analytic Functions Admitting a Distribution Boundary Value," Ann. Scuola Norm. Sup. Pisa 11, 559–591 (1984).

    MATH  MathSciNet  Google Scholar

  3. Bell, S., Boas, H. "Regularity of the Bergman Projection and Duality of Holomorphic Function Spaces," Math. Ann. 267, No. 4, 473–478 (1984).

    Article  MATH  MathSciNet  Google Scholar

  4. Barrett, D. "Duality Between A and A −∞ on Domains with Nondegenerate Corners," Contemp. Math. 185, 77–87 (1995).

    Article  Google Scholar

  5. Abanin, A. V., Khoi, Le Hai. "On the Duality Between A −∞(D) and A D for Convex Domains," C. R. Acad. Sci. Paris, Ser. I 347, No. 15–16, 863–866 (2009).

    Article  MATH  MathSciNet  Google Scholar

  6. Abanin, A. V., Khoi, Le Hai. "Dual of the Function Algebra A −∞(D) and Representation of Functions in Dirichlet Series," Proc. Amer. Math. Soc. 138, No. 10, 3623–3635 (2010).

    Article  MATH  MathSciNet  Google Scholar

  7. Abanin, A. V., Khoi, Le Hai. "Pre-Dual of the Function Algebra A −∞(D) and Representation of Functions in Dirichlet Series," Complex Anal. Oper. Theory 5, No. 4, 1073–1092 (2011).

    Article  MATH  MathSciNet  Google Scholar

  8. Abanin, A. V., Khoi, Le Hai. "Cauchy-Fantappiè Transformation and Mutual Dualities Between A −∞(Ω) and A (Ω̃) for Lineally Convex Domains," C. R. Acad. Sci. Paris, Ser. I 349, No. 21–22, 1155–1158 (2011).

    Article  MATH  MathSciNet  Google Scholar

  9. Abanin, A.V., Khoi, Le Hai. "Mutual Dualities BetweenA −∞(Ω) and A (Ω̃) for Lineally Convex Domains," Complex Var. Elliptic Equ. 58, No. 11, 1615–1632 (2013).

    Article  MATH  MathSciNet  Google Scholar

  10. Bonet, J., DomaÅ„ski, P. "Sampling Sets and Sufficient Sets for A −∞," J. Math. Anal. Appl. 277, No. 2, 651–669 (2003).

    Article  MATH  MathSciNet  Google Scholar

  11. Horowitz, C. A., Korenblum, B., Pinchuk, B. "Sampling Sequences for A −∞," Michigan Math. J. 44, No. 2, 389–398 (1997).

    Article  MATH  MathSciNet  Google Scholar

  12. Khoi, Le Hai, Thomas, P. J. "Weakly Sufficient Sets for A −∞(D)," Publ. Mat. 42, No. 2, 435–448 (1998).

    Article  MATH  MathSciNet  Google Scholar

  13. Bruna, J., Pascuas, D. "Interpolation in A −∞," J. London Math. Soc. 40, No. 3, 452–466 (1989).

    Article  MathSciNet  Google Scholar

  14. Abanin, A. V., Khoi, Le Hai, Nalbandyan, Yu. S. "Minimal Absolutely Representing Systems of Exponentials for A −∞(Ω)," J. Approx. Theory 163, No. 10, 1534–1545 (2011).

    Article  MATH  MathSciNet  Google Scholar

  15. Abanin, A. V., Ishimura, R., Khoi, Le Hai. "Surjectivity Criteria for Convolution Operators in A −∞," C. R. Acad. Sci. Paris, Ser. I 348, No. 5–6, 253–256 (2010).

    Article  MATH  MathSciNet  Google Scholar

  16. Abanin, A. V., Ishimura, R., Khoi, Le Hai. "Exponential-Polynomial Bases for Null Spaces of Convolution Operators in A −∞," Contemp. Math. 547, 1–16 (2011).

    Article  MathSciNet  Google Scholar

  17. Abanin, A. V., Ishimura, R., Khoi, Le Hai. "Convolution Operators in A −∞ for Convex Domains," Ark. Mat. 50, No. 1, 1–22 (2012).

    Article  MATH  MathSciNet  Google Scholar

  18. Abanin, A. V., Ishimura, R., Khoi, Le Hai. "Extension of Solutions of Convolution Equations in Spaces of Holomorphic Functions with Polynomial Growth in Convex Domains," Bull. Sci. Math. 136, No. 1, 96–110 (2012).

    Article  MATH  MathSciNet  Google Scholar

  19. Kawai, T. "On the Theory of Fourier Hyperfunctions and its Applications to Partial Differential Equations with Constant Coefficients," J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 17, No. 3, 467–517 (1970).

    MATH  Google Scholar

  20. Ishimura, R., Okada, J. "Sur la Condition (S) de Kawai et la Propriétéde Croissance Réguliè re d'Une Fonction Sous-Harmonique et d'Une Fonction Entiè re," Kyushu J. Math. 48, No. 2, 257–263 (1994).

    Article  MATH  MathSciNet  Google Scholar

  21. Meise, R., Vogt, D. "Characterization of Convolution Operators on Spaces of C -Functions Admitting a Continuous Linear Right Inverse," Math. Ann. 279, No. 1, 141–155 (1987).

    Article  MATH  MathSciNet  Google Scholar

  22. Momm, S. "Convex Univalent Functions and Continuous Linear Right Inverses," J. Funct. Anal. 103, No. 1, 85–103 (1992).

    Article  MATH  MathSciNet  Google Scholar

  23. Langenbruch, M., Momm, S. "Complemented Submodules in Weighted Spaces of Analytic Functions," Math. Nachr. 157, 263–276 (1992).

    Article  MATH  MathSciNet  Google Scholar

  24. Langenbruch, M. "Continuous Linear Right Inverses for Convolution Operators in Spaces of Real Analytic Functions," Studia Math. 110, No. 1, 65–82 (1994).

    MATH  MathSciNet  Google Scholar

  25. Meyer, T. "Surjectivity of Convolution Operators on Spaces of Ultradifferentialble Functions of Roumieu Type," Studia Math. 125, No. 2, 101–129 (1997).

    MATH  MathSciNet  Google Scholar

  26. Melikhov, S. N. and Momm, Z. "On the Linear Inverse from Right Operator for the Convolution Operator on the Spaces of Germs of Analytical Functions on Convex Compacts in C," Mathematics (Iz. VUZ) 41, No. 5, 35–45, (1997).

    MathSciNet  Google Scholar

  27. Zharinov, V. V. "Compact Families of Locally Convex Topological Vector Spaces, Fréchet-Schwartz and Dual Fréchet-Schwartz Spaces," Russ. Math. Surv. 34, No. 4, 105–143 (1979).

    Article  MATH  MathSciNet  Google Scholar

  28. Meise, R., Vogt, D. Introduction to Functional Analysis (Oxford University Press, 1997).

    MATH  Google Scholar

  29. Hörmander, L. An Introduction to Complex Analysis in Several Variables (D. van Nostrand Company, N. J.-Toronto-New York-London, 1966; Mir, Moscow, 1968).

    MATH  Google Scholar

  30. Varziev, V. A. and Melihkov, S. N. "On Coefficients of Exponential Series for Analytic Functions of Polynomial Growth," Vladikavkazsk. Matem. Zhurn. 13, No. 4, 18–27 (2011).

    Google Scholar

Download references

Author information

Authors and Affiliations

Corresponding author

Correspondence to A. V. Abanin.

Additional information

Original Russian Text © A.V. Abanin, Le Hai Khoi, 2015, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2015, No. 1, pp. 3–13.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abanin, A.V., Khoi, L.H. Linear continuous right inverse to convolution operator in spaces of holomorphic functions of polynomial growth. Russ Math. 59, 1–10 (2015). https://doi.org/10.3103/S1066369X15010016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.3103/S1066369X15010016

Keywords

  • holomorphic function
  • polynomial growth
  • convolution operator
  • linear continuous right/left inverse operator

edwardslierhan.blogspot.com

Source: https://link.springer.com/content/pdf/10.3103/S1066369X15010016.pdf

0 Response to "Convolution of a Continuous Compact Support With a Polynomial is a Polynomial"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel